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Abstract

The ability of fast and automatic volume measurement of merchandise is of
paramount importance in logistics. In this paper, we address the problem
of volume estimation of goods stacked on pallets and transported in pallet
trucks. Practical requirements of this industrial application are that the load
of the moving pallet truck has to be measured in real-time, and that the mea-
surement system should be non-invasive and non-contact, as well as robust
and accurate.The main contribution of this paper is the design of simple,
flexible, fast and robust algorithms for volume estimation. A significant fea-
ture of these algorithms is that they can be used in industrial environments
and that they perform properly even when they use the information provided
by different range devices working simultaneously. In addition, we propose
a novel perception system for volume measurement consisting of a hetero-
geneous set of range sensors based on different technologies, such as time
of flight and structured light, working simultaneously. Another key point
of our proposal is the investigation of the performance of these sensors in
terms of precision and accuracy under a diverse set of conditions. We also
analyse their interferences and performance when they operate at the same
time. Then, the analysis of this study is used to determine the final configu-
ration of the cameras for the perception system. Real experiments proof the
performance and reliability of the approach and demonstrate its validity for
the industrial application considered.
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1. Introduction

Volume estimation is a common problem in industry which is often time-
consuming, complex and usually performed by human operators. There-
fore, the automation of this task has attracted very often the interest of re-
searchers. Despite related works have been proposed in the literature, their
field of application is in general quite specific. Some examples are in the
agricultural field for volume measurement of different kind of fruits [1] [2],
or in the context of mining for estimating the in-bucket payload volume on
a dragline excavator [3] [4], or in [5] for volume measurement of the load in
a haul truck tray.

A common approach consists in measuring distances in the three princi-
pal axes of the target to compute its volume [6] due to its robustness and
simplicity. In the field of medicine, some high-accuracy volumetric measure-
ments have been designed using Robotic 3D Scanner. For instance, in [7] the
Frustum Sign Model is explained to have an accuracy about 8% of measured
volume, while the presented method reaches a 2% in controlled environments.
However, it is difficult to find a system meeting the demanding industrial re-
quirements and valid for a wide range of applications. More general volume
measurement techniques are introduced in [8], which is specially appropri-
ate for medium sized objects, or in [9], where dense surface reconstruction
is pursued for volume estimation of objects with irregular shapes. A major
contribution of this paper is the system presented which includes two new
methods designed to measure volume in real time and in industrial conditions
with an accuracy about 4,5%, which is quite acceptable for an industrial pro-
cess that it has been performed manually until now. Up to our knowledge,
there are not accurate generic algorithms for volume measurement such as
the one proposed here. Therefore, we consider our proposal to have a great
potential because our perception system is not constrained to a unique type
of application, being applicable to a wide range of targets.

In all the works mentioned previously the volume is computed through
depth information provided by range sensors. Currently, the major technolo-
gies to acquire depth information in computer vision are stereo cameras [10]
[11], structured light [12] and time of flight [13] [14]. The stereo approach
consists first in taking several images from different positions and viewpoints.
Then, in order to get depth information it is necessary to match image infor-
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Table 1: Main features of the devices employed in this work for data acquisition.
Sensor name Asus Xtion Pro Asus Xtion Pro Live SR-4000 IFM O3D200

Manufacturer Asus Asus Mesa imaging ifm electronic

Technology Structured light Structured light Time-of-flight Time-of-flight

Range (m) 0.8 - 3.5 0.8 - 3.5 0.1 - 5 0.5 - 6.5

Resolution (pixels) 640 × 480 640 × 480 176 × 144 64 × 48

Field of view (o) 58o × 45o 58o × 45o 43.6o × 34.6o 40o × 30o

Frame rate (fps) 30 30 50 not specified

Output x, y, z x, y, z, colour (RGB) x, y, z, intensity x, y, z, intensity

Size (mm) 180 × 35 × 50 180 × 35 × 50 65 × 65 × 76 137 × 75 × 95

Weight (g) 230 230 510 1205

Power consumption (W) < 2.5 < 2.5 12 (12V, ca. 1A) 16

Connection USB 2.0 USB 2.0 Ethernet Ethernet

Asus Xtion Pro: http://www.asus.com/Multimedia/Xtion_PRO
ASUS Xtion Pro Live: http://www.asus.com/Multimedia/Xtion\_PRO\_LIVE

Mesa SR 4000 http://www.mesa-imaging.ch/products/sr4000

IFM O3D200 http://www.ifm.com/products/ind/ds/O3D200.htm

mation and to know the intrinsic and extrinsic parameters of the cameras.
Regarding the structured light technology, it basically consists in the anal-
ysis of the deformation of a known light pattern when it is projected into
an object or scene. Then, the distance between the device and each part
of the scene can be estimated by triangulation techniques. Finally, time of
flight technology is based on the measurement of the time elapsed between
the emission and subsequent arrival of a light beam, normally infrared, once
it has been reflected into an object placed inside its field of view. Since its
speed is known, the measurement of the range is immediate by computing
the phase offset. As detailed in the following, the devices used in our system
design are based on the two latter technologies.

Figure 1: Devices used in this work. On the left an Asus Xtion Pro Live, a Mesa SR 4000
in the centre and an IFM O3D200 on the right.

In the last decade, range sensors based on structured light have been
intensively developed and their considerable price reduction has eased their
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wide utilization in the research field [12] [15] [16]. Consequently, great efforts
have been devoted to develop new techniques for processing and working with
point cloud data. However, since these kind of sensors were initially designed
as game controllers for domestic environments, they are not commonly used
yet in the industry field due to their lack of robustness and protection re-
quired for industrial environments. On the other hand, the use of industrial
oriented devices such as Mesa SR 4000 based on time-of-flight technology is
becoming popular (e.g. [17] or [18]). The devices we consider in this work
are Asus Xtion Pro, ASUS Xtion Pro Live, Mesa SR 4000 and IFM O3D200
(see Fig. 1). The two first are based on structured light whereas the others
are based on time of flight technology. The data coming from these devices
present important differences due to the distinct technologies they use to get
the information which increases the difficulty of working with the data ac-
quired considerably. Their main specifications are summarized in Table 1. A
key issue when dealing with these kind of devices is the integration from the
software point of view of the information they provide. A straightforward
way to process this information is using the concept of point cloud because
of its versatility to work with 3D data. In particular, what we use for image
and point cloud processing in this work is the “Point Cloud Library” (PCL)
[19], which contains numerous state of the art algorithms for 3D perception.
Note that a key point that makes the problem addressed in this paper very
challenging is the configuration of the cameras in the setup with very differ-
ent points of view. State of the art approaches usually consider acquisitions
of images with very close points of view to simplify the registration process.
However, this can be a hard constraint in practice as it requires the acqui-
sition of many images all around the target, which is not feasible for some
applications. The method presented here only requires three images that can
possess very different points of view to cover the merchandise. Standard reg-
istration algorithms will fail in fusing this information whereas our proposal
handles this issue efficiently.

The aim of the perception system presented in this paper is to provide
volume information through computer vision techniques during usual logis-
tics processes such as truck loading and unloading or material flow controlling
inside warehouses. This kind of automatic system for volume measurement
allows the consequent time and cost saving. For addressing this task it is
necessary to use multiple cameras simultaneously because, on the one hand,
the information provided by a single camera device is not enough for regis-
tering the whole scene due to the dimensions of logistics merchandise, and

4



on the other hand, it is not feasible in the application considered to rotate or
manipulate the load in front of a single sensor to obtain complete information
of the load. Next, several examples of multi-camera approaches that can be
found in the literature are commented. A system consisting in a combina-
tion of ToF measurements with stereo in a semi-global matching framework
is presented in [20]. Using several cameras allows increasing the working
volume but it is also required extrinsic calibration to register all captured
data. This issue is considered in [21] with ToF cameras. Another solution
for multi-cameras systems is proposed in [22] by using a client-server-based
capture system. Then, all captured data are transformed into point clouds
using PCL, being afterwards all points fused into a global registered point
cloud. However, in both previous works only devices of the same technology
are used together, whereas the approach presented in this paper is able to
combine information from very different devices such as Asus’ cameras or
MESA SR 4000. Although in terms of a real application this configuration
would not be probably the first choice, we think that there can be appli-
cations with particular hardware constraints requiring such configurations.
Then, the flexibility offered by our algorithms in comparison with the related
works to perform correctly with so different devices is a clear advantage.

An important issue when dealing with multiple cameras simultaneously
is the problem of interferences and the consequent performance degradation.
This issue has to be considered in order to avoid jeopardizing the desired
robustness and accuracy of the system. Works in the literature studying dif-
ferent factors related with these issues have been presented. Some examples
are [23], which explains an exhaustive method for the comparison of the ac-
curacy between the MESA SR 4000, Fotonic B70, and the Microsoft Kinect;
[24], where a study of the effects of interferences on the accuracy and pre-
cision of RGB-D sensors depending on how they are placed is presented; or
[25], in which a comparison study between Microsoft Kinect and Asus Xtion
sensors is exposed.

In this paper, we present a different analysis to study extensively the
performance of Asus Xtion, Mesa SR 4000, and IFM O3D200. Notice that,
although [24] focuses on the study of the accuracy deterioration due to in-
terferences, we are also interested about the response of the devices both
in terms of accuracy and precision. Additionally, we compare and analyse
the different devices considered (Table 1) in the same conditions and with
materials typically involved in the considered field of application. In partic-
ular, we have focused on how their performances vary in terms of precision
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Figure 2: Environment where the system has been assessed. The three cameras used for
volume estimation are located in the arch. The operator crosses under the arch pushing
the pallet truck with the merchandise. The screen placed on the left side shows the user
interface of the system and displays information in real time of the acquired data and the
volume estimation.

and accuracy when working conditions such as distance or target materials
change. Additionally, it has been studied how they are affected when they
operate with another device at the same time. The conclusions of this study
have been useful for locating the sensors in an adequate configuration for the
task addressed.

Thus, the first contribution of this work is the analysis and comparison
study of the cameras aforementioned. The second contribution is the design
of two robust, flexible and accurate algorithms for volume estimation starting
from the data acquired by quite different cameras. Then, these algorithms
have been implemented in a perception system to automatize the procedure.
The system setup to evaluate the proposed volume estimation algorithms
consists in a metallic arch where the cameras have been installed. An image
showing this setup with an operator pushing a pallet truck while the system
is working is shown in Fig. 2. The proposed system has been designed to
estimate the volume of the load stacked on a pallet when an operator trans-
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porting it employing a pallet truck passes through the arch, although it can
be used in other scenarios given its flexibility. Then, a screen next to the arch
shows to the user the volume estimation in real time. It must be remarked
that due to the flexibility of the designed algorithms the system can be easily
adapted to other transportation devices too or even to other scenarios.

The paper is organized as follows. In Section 2 is presented an analysis
of the performance of multiple range sensors and the interferences when they
operate at the same time. The following Section 3 describes the segmenting
pipeline to extract the useful information from the point clouds acquired.
In Section 4, 3D registration process is explained. The algorithms designed
for volume estimation are described in Section 5. The proposed approach is
tested with fifteen real situations in Section 6. Finally, conclusions are given
in Section 7.

2. Analysis and comparison of cameras

Before addressing the volume computation process, we found it essential
to gain further technical knowledge about the performance of the devices.
In particular, it is important because it is very difficult to develop an ac-
curate application for volume measurement whether the measuring depth
average error is high. Therefore, both precision and accuracy of the devices
have been studied in different working conditions. The trials considered dif-
ferent working materials, as well as their distance to the devices. Then, it
is possible to compare the devices and the different technologies involved.
Additionally, another purpose of the study is to know whether interferences
exist when several devices work together, and in that case, which are their
effects. Besides, the study of the precision and accuracy has been used to
better define the configuration of the devices in order to improve data quality
and consequently, get better results with the system in the task of volume
estimation.

A variety of materials have been considered in this study such as a card-
board box, a plastic box, a wooden pallet, a plastic pallet, several sheets
of paper and cards of distinct colours, a bubble wrap plastic, a greenhouse
plastic, a metallic bin or a laptop screen with wallpapers of different colours.
Then, one hundred point clouds have been acquired for every object at two
different ranges, 1.5 and 3.0 meters, for the purpose of analysing how data is
affected. Fig. 3 shows the materials used in the study and how the devices
have been placed.
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Another important aspect we have studied is the influence of varying the
illumination conditions. In particular, we considered typical indoors electric
light and indirect sunlight. The comparison has not been included since
it shows that the effect in the performance of the cameras under normal
operational conditions is negligible.

Figure 3: On the left, the elements employed in the study of precision and accuracy. On
the right, the devices and their configuration in the study.

2.1. Precision and accuracy study

Firstly, it is convenient to highlight the properties we are going to study
in order to analyse the data adequately. On the one hand, precision is the
closeness of agreement between indications or measured quantity values ob-
tained by replicating measurements on the same or similar objects under
specified conditions (according to the International Vocabulary of Metrology
(VIM)[26]). On the other hand, accuracy is the closeness of agreement be-
tween a measured quantity value and a true quantity value of a measurand.
Precision has been estimated through the standard deviation of the range
measured by the sensors, which represents their variability; whereas accu-
racy has been estimated through the error between the correspondent value
of the z -axis (orthogonal to the camera image plane) and the real distance
to working materials.

Precision results for both, 1.5 and 3.0 meters, are shown in Fig. 4. At-
tending to Asus, variability considerably increases in all the situations when
distance raises (an increment of 250% on average). However, this effect is not
so pronounced for IFM or Mesa. In fact, Mesa’s precision improves for some
materials, specially those made of plastic. Therefore, a first conclusion is that
although the precision of these devices was initially slightly lower than Asus,
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Figure 4: Both graphics show the mean of the standard deviation of the range computed
in each pixel of the devices for all the materials used in the study. They represent the
variability of every range sensor in each pixel, what it is to say, their precisions. The first
graphic displays the results when the working distance is 1.5 meters and the last one when
it is 3.0 meters.

it remains quite stable when the distance shifts. The major reason to such
behaviour is the distinct aims these devices have been devised to, because
whilst Asus’ cameras are game controllers, Mesa and IFM are industrial ori-
ented sensors and therefore, designed under quite different constraints. More
detailed explanations are exposed in the presentation of the accuracy study
results.

9



Another remarkable aspect in Fig. 4 is that both Mesa’s and IFM’s devices
present bigger variability differences when working materials change, being
much more pronounced when the materials are composed of plastic. This is
specially striking in the case of working with the plastic pallet, where the
precision of both devices is pretty bad. The main reason to this performance
is that the pallet has been chemically and physically processed, resulting
then in a smooth surface with a high degree of specularity, so it reflects too
much light, what deteriorates the measurements based on the time of flight
technology.

In conclusion, it can be stated that the Asus presents a more stable per-
formance generally, or, in other words, it is less affected by the working
objects than the other devices. The principal reason to this performance
is the different technologies the devices are based on. Since time of flight
depends on the intensity received from the beam reflected into the materi-
als, if the material changes, the same does the quality of the data received.
However, structured light does not depend so much on the properties of the
material, so it is considerably less affected by this issue. Note also that the
colour change does not affect to the performance of the devices, according
to the similar results obtained with the different papers, cards or even the
computers’ screens.

Given the necessity of knowing the standard deviation in each pixel of the
devices to analyse their precision, this information can be used to represent
how the variability is distributed throughout all the scene for each camera.
This means that it can be known which parts are the most problematic for
every range sensor. For this reason, one hundred point clouds of each scenario
have been acquired to measure the precision in each pixel. Then, depth
data of all the point clouds have been analysed for each pixel to compute
their standard deviations. That is to say, we measure the variation of depth
information in each pixel during the acquisition of one hundred point clouds.
A greater variation is linked with a less reliable data, which usually means a
higher error in the volume measurement process. The parts of the scenarios
with higher variability have been represented with white colours in the second
row of pictures for each sensor in Fig. 5.

In the case of Asus, it can be observed in the second column that the
higher variability basically appears throughout the contours. Even though
the same occurs with the Mesa, it does in a less intense way. However,
it can be checked that the variability of the inner data of the objects is a
bit higher, mainly when they are made of plastic. From the images of the
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(1) Cardboard box

(2) Plastic box

(3) Wooden pallet

(4) Plastic pallet

Figure 5: The two first columns correspond with the images acquired by Asus Xtion Pro,
the next two by Mesa SR 4000 and the last by IFM O3D200. In the first column of
each pair is shown the depth images for the different objects used: a cardboard box, a
plastic box, a wooden pallet and a plastic pallet respectively from top to bottom. Depth
estimation variability can be observed in the second column for each point of the scene,
in a scale from black to white (the biggest variability).

IFM, it is noteworthy that there is barely difference between the variability
of the contour and inside the object. Additionally, the variability is rather
distributed in all the object. There are reasons which explain the lower
precision in the contours depending on the technology used to get the depth
information. In the case of structured light devices, there are shadows in the
triangulation process done to compute depth as a consequence of being the
contour zone visible only for one of the two artefacts which form the device
(light emitter and light sensor). In the case of time of light technology, there
are multiple reflections which falsify data when the beam reaches the edge
since the surface is not totally plain.

Next, it has been studied the accuracy of the measurements in the z -
axis. Specifically, we have computed the accuracy through the mean of the
average values measured in each pixel of the devices for one hundred point
clouds acquired for each distinct object. The results are shown in Fig. 6 for
both working distances, 1.5 and 3.0 meters. As with the precision, the Asus
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Figure 6: Mean error when measuring range with the cameras for the different objects
and materials at 1.5 meters and 3.0 meters (first and second graphic, respectively), which
represents the accuracy of the sensors.

presents the best accuracy for the working distance of 1.5 meters, being fewer
than 3%. However, it considerably deteriorates when the range increases to
3.0 meters. Even so, this increment is not as big as in the precision study.
In addition, the results are quite homogeneous attending both precision and
accuracy. Hence it can be stated that Asus is very robust faced with working
material. Another important aspect is that the standard deviation of the
accuracy is smaller with the Asus than with the other devices in all the
situations by far.

Analysing Mesa, it can be observed it has better accuracy than the IFM in
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almost all the cases, being the worst response with the materials composed of
plastic, as it happened in the precision study. However, both sensors improve
their performance when range increases, specially in the case of Mesa. One
of the reasons to this performance behaviour when the object is further away
is that time of flight technology is basically based on measuring the time an
emitted wave takes to come back to the sensor. Nowadays, it is relatively
easy to measure this time elapsed with great accuracy, being even easier
when this time is higher. Another reason is the different aims these devices
have been devised to. Asus’ cameras have been initially designed as game
controllers, so their application do not require a great quality on the acquired
data. However, IFM and Mesa are industrial oriented cameras, so they are
used in applications where accuracy and precision can be essential.

Although in the viewpoint of the precision there is no difference between
working with papers or cards, on the other hand it does in the accuracy of
time of flight-based cameras. The reason is that paper is thinner, therefore
the range measurements are distorted because the infrared beams go partially
through it.

2.2. Interference Study

Regarding the performance of the devices, it is not only necessary to
know their precision and accuracy features, previously analysed, but also
it is important to know about their operation working with other devices
simultaneously. This is capital for the correct performance of the proposed
system, which is devised to work with several cameras in order to make a 3D
registration from the information of the merchandise acquired from different
viewpoints in one shot.

For evaluating wether interferences appears between the devices, the vari-
ations of the precision and the accuracy have been studied for each device
working with others together, also including the case in which two equal de-
vices work simultaneously. The tests have been carried out for 1.5 meters
and employing some materials of the precision and accuracy study such as
a card, a paper, a cardboard box or with empty space to check whether the
change of the working material influences in the interferences.

The results of the interference study are depicted in Figs. 7, 8, and 9
corresponding to Asus Xtion Pro, Mesa, and IFM, respectively. From the
collected data, it can be concluded that the single situation in which Asus
suffers from interferences is working with another Asus. The reason is that
both patterns mix, then their correct performance is interfered and as a result

13



Figure 7: Mean of the standard deviation of depth measurement in each pixel of the Asus
when the working distance is 1.5 meters and other devices are operating at the same time.

Figure 8: Mean of the standard deviation of depth measurement in each pixel of the MESA
when the working distance is 1.5 meters and other devices are operating at the same time.

Figure 9: Mean of the standard deviation of depth measurement in each pixel of the IFM
when the working distance is 1.5 meters and other devices are operating at the same time.
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Figure 10: The image represents the variability in each pixel of an Asus (where the lighter
colours represent higher standard deviations of the depth measurement) when its IR emit-
ter has been blocked and a second Asus is placed next to it. The cameras are pointing the
same point of a wall in this example.

their variability increase. Despite the previous issue, the effects of the inter-
ference do not seem severe because the accuracy is not affected and in general
there is a slight increment of the variability, with the exception of the paper
where it is a bit higher. For instance, in Fig. 10 it is shown how the pattern
of a second Asus affects to the variability of the first Asus. Recommenda-
tions to place structured light cameras in order to minimize interferences like
Fig. 10 have been proposed in [24]. It is important to say that even though
the results shown in Fig. 7 demonstrate there is not interference between the
IFM and the Asus from the point of view of precision, it has been visually
checked the apparition of holes into the Asus’ point clouds when they work
together (Fig. 11). It has been confirmed that the appearance of this phe-
nomenon depends on the IFM’s exposure time, which should be modified
depending on different aspects as the working material, the lighting or the
range.

Figure 11: On the left, an Asus’ point cloud of a card. In the other two images, the same
card when the Asus works with an IFM simultaneously. The holes in the two latter are a
consequence of interferences caused by IFM.

Attending to Mesa’s data (Fig. 8), a deep interference when it is working
with the IFM simultaneously is observed. Besides, there is a slight increment
of the variability when two Mesa work together. It must be highlighted that
both Mesa are synchronized, otherwise results would be similar to the case
of one Mesa working with an IFM. On the contrary, by analysing the IFM
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interferences (Fig. 9), it is surprising that there is few influence working
with the Mesa simultaneously. In this case, the increment of the variability
is minimum (around 0,1%) compared with the correspondent to the Mesa
(around 0,8% or more, depending on the material). In view of Fig. 9, the
biggest interferences occurs when both IFM work at the same time, causing
not only a high variability increment but also an accuracy decrease working
with certain materials. The main reason for this performance is that they
have not been synchronized.

2.3. Analysis and discussion

Once the precision, accuracy and interferences of the devices have been
analysed, some conclusions have been reached for the design of the system.
First, an IFM working with other devices can be counterproductive. Even
though the detected problems between an IFM O3D200 and a Mesa SR 4000
can be solved with a correct synchronization, it is not possible to solve the
observed interferences when an Asus’ camera works with an IFM simultane-
ously. This is one of the reasons why we have decided not to use the IFM’s
devices in the volume estimation system. Another reason is that the accuracy
of Asus is better than IFM for short distances. Besides, the Mesa’s error is
lower than the error of IFM for long distances.

Moreover, there is one more reason for such decision. From the point
of view of the resolution, the IFM’s camera presents a clear disadvantage
(Table 1). For example, in the case of working with the cardboard box
placed at 1.5 meters, the number of points that represent such object with
Asus are 20409, with Mesa 3130 and finally 272 with IFM. If the working
distance is 3.0 meters, the number of points is 4795, 799 and 87 respectively.
Then, the few points that represent de box in the case of the IFM can cause
the loss of some details, which is crucial to achieve an accurate system. In
particular, the side of the box is 50 cm and it is described by 22 points with
the IFM at 1.5 meters, so for at least 2,3 cm there is not any information
available, which can increased the volume estimation error obtained by the
system up to 10% in the worst case (considering only the error in one axis).
Therefore, the cameras finally employed in the proposed application are Mesa
SR 4000, Asus Xtion Pro and Asus Xtion Pro Live.

2.4. Spatial configuration of devices

A critical point of the system is the placement of the devices. It de-
termines some aspects such as their operation range, how the point clouds
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acquired are or how the information represented by them is. It is also neces-
sary to take into account that the devices must have some intersecting view
in order to be possible to make a 3D registration of the merchandise.

The conclusions of precision and accuracy study have conditioned deci-
sions about how to set the cameras. In the study has been proved that work-
ing range affects in a different way to data quality of each device. Specifically,
Asus shows a higher performance when the range is smaller. However, Mesa
provides better data when range is bigger, according to how its precision
and accuracy change. Additionally, taking into account that the considered
application requires not blocking the pallet truck path, we chose to install
the devices in an arch shape metal structure appropriate for using it in a
corridor. For these reasons, we have decided to set two Asus at the structure
sides and one Mesa at the top part. Since the structure sides are closer to
the merchandise than the top, this setting favours that cameras work in op-
timal distance conditions. In addition, this configuration allows minimizing
interferences between both Asus.

Although it has been decided to work with two Asus and one Mesa, other
set of devices could have been chosen, however they present some drawbacks
which are described below:

• Three Asus: the interferences where the three patterns intersect are
substantial, which coincides in where the merchandise passes. As a
consequence, the accuracy of the system would decrease.

• Three Mesa: these devices must be as faced as possible to the mer-
chandise. So in case they are placed at the sides of the corridor, they
should not be in a slanted orientation, but otherwise they would be
too close to the merchandise. Consequently there would not be enough
minimum distance to work correctly.

• Two Mesa and one Asus: if the Mesa’s devices are placed at the
sides, the problem is the same than in the latter situation. In case
they are placed at the top of the structure, we would not dispose of
enough information of the sides of the merchandise because only the
Asus remains to be placed.

Note that, although additional cameras could be used to obtain better
coverage of the merchandise, we choose only three in order to keep acquisition
and processing data time bounded as well as to limit the system cost. Once
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Figure 12: Configuration chosen for the devices. Both Asus on the sides and the Mesa
on the top part. The Asus registers lateral information exclusively and the Mesa gives an
upper view of the scene, being its z -axis perpendicular to the floor plane. The cameras
have been highlighted in the image with white circles.

placement of devices has been determined and which of them are being used,
there is still to decide their orientations to face the load. In the case of
Mesa, we have decided to face it to the floor, that is to say that its z -axis
matches up with the perpendicular to the ground plane. Such orientation
eases some aspects of the algorithm because its point of view is a zenithal
view where the z -axis matches up directly with the height of the objects.
It must be remarked that the own manufacturer of Mesa recommends for a
correct performance to face it perpendicularly to the target because otherwise
malfunctions related to multiple reflections can happen (Fig. 13). Asus’
cameras have been oriented to the sides of the merchandise, but slightly
inclined to the ground. The final configuration of the three cameras can be
seen in Fig. 12.

The only drawback of the chosen setting is that front and rear information
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Figure 13: Note that the side of the box represented in the point cloud acquired by MESA
SR 4000 seems curved when it should be plane. Besides, the majority of points which
represent it are concentrated on the lower part. This phenomenon working with the Mesa
is due to multiple reflections caused by the proximity of other planes to the curved plane.
As a result, the beams rebound in these other planes, and the measurement is distorted.
The device is placed in the top of the arch facing the front part of the merchandise
(approximately on the left top of this picture).

of the merchandise we want to estimate its volume is not available because
enough free space is needed for the movement of the merchandise. However,
it is not a problem because side and top information of the target is enough
for volume computation as we demonstrate in this work.

In particular, all cameras are oriented to the same area and they are
triggered at the same time to synchronize data acquisition. Note that during
the trials, information was acquired under request of the operator. It must
be highlighted that the merchandise is supposed to be rigid, that is to say
that there are neither deformation nor relative movement between the boxes.
Therefore, any possible de-synchronization does not affect the results as long
as the information across the sensors is properly matched, as it is proved in
the experimental results.

3. Scene segmentation

First of all, it is necessary to unify the data from the devices under a
single format. For this purpose, we have chosen to work with the Point Cloud
Library (PCL) to manage point clouds, since it provides tools facilitating to
deal with and process this data. PCL allows to control the Asus’ cameras
and it converts the recorded data into the desirable format too. In the case
of Mesa, we implemented the code both to control the camera and to convert
data to the required format.

Even though all point clouds we work with are under the same format,
they are very different because of the disparate ways the devices they come
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from acquire the data. An example is the type of information provided by the
devices. On the one hand, the Asus provides depth and colour information of
the scene, so overlaying them a 3D colour point cloud is granted. But, on the
other hand, the Mesa does not incorporate a RGB sensor so it is impossible
to get colour information. In this case, Mesa provides depth and intensity
information obtained by the difference of energy between the emitted infrared
light beam and the received one after being reflected into the objects placed
inside its view. Then, through the union of both data a 3D intensity point
cloud is achieved.

As it has been already mentioned above, the aim of this paper is the vol-
ume estimation of the merchandise transported on a pallet. However, since
there are more objects into the scene apart from the merchandise (the floor,
a pallet truck, etc.), it is necessary to process the acquired data to work only
with useful information through the removal of the corresponding data to the
pallet truck, the ground or the pallet. The scene segmentation is a typical
problem in computer vision and different approaches are usually used depend-
ing on how the scene is [27]. In our project, the processing pipeline consists
of a plane extraction for the floor, the application of filters for the removal
of the pallet, followed by a clustering for isolating the merchandise. The
use of these well-known techniques that have been widely applied provides
robustness to the system (e.g. [28]). In the following sections, we describe
the procedure to extract the surrounding elements of the merchandise.

3.1. Ground extraction

So as to extract the ground, the widely known Random Sample Consen-
sus algorithm (RANSAC)[29] has been used. However, instead of applying
it every time a point cloud is acquired, we propose to calibrate the floor
plane through RANSAC the first time cameras are placed in the workplace.
Thereby, it can be granted that, during the calibration, there are only ground
and walls inside the view of the cameras. Thus, the number of spurious points
is substantially reduced during the estimation of the ground plane equation
for the purpose of the floor being the main plane of the scene and therefore
ensure the robustness of the ground extraction.

Afterwards, each time it is needed to extract the ground plane in order
to do a new volume measurement during the system normal operation, it is
solely necessary the removal of those points belonging to the plane previously
computed. Proceeding in this way makes sense because once the cameras
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have been placed, the floor equation is always the same, so it would not be
efficient to apply RANSAC each time the floor needs to be removed.

3.2. Pallet truck and pallet extraction

Even though the ground is easily identifiable, the extraction of the rest
of components can be more complicated. Then, we have decided to use
the additional information the cameras provide to extract the pallet from
the merchandise, which are the intensity and the colour of the scene. This
is possible due to the features of the employed pallet, which is composed
of polymers. The usage of such type of pallets is increasing because they
are recyclable, resulting in an important saving. In this way, features like
colour are readily modifiable. In our case, the pallet used is black, and as a
consequence it can be easily detected. Additionally, this kind of surface is in
general smooth and with a high level of specularity. As a result, the intensity
received from the pallet in the Mesa is considerably lower than the intensity
from the rest of elements of the scene because it is highly scattered in every
direction.

Therefore, by applying a colour filter we can remove almost all the pallet
from the point clouds acquired by the Asus with colour sensor. In the case
of Mesa, the procedure is analogous but over the intensity information. This
method has been applied because the height of the pallet can be different
each time given that the user can vary this height arbitrarily. Consequently,
it cannot be calibrated offline and online method as the one proposed here is
necessary. However, since Asus Xtion Pro does not integrate a colour sensor
nor an intensity sensor, none of the previous filters can be applied. For this
reason, we have estimated a mean height of the pallet with respect to the
floor for the Asux Xtion Pro’s filter. As the equation of this plane is known,
the pallet can be roughly extracted by removing those points with a lower
distance to the plane than this measurement.

At this point, it should be applied the filter explained in the following
section 3.3 that we have developed. The purpose of this filter is solving
reflections problems detected working with the Mesa SR 4000 and the plastic
pallet in some specific situations, specially when the surface of the pallet
where the Mesa just aims straight is not covered with any object.

Once the pallet has been extracted, there might be only a few secondary
elements in the point cloud, apart from the load, such as part of the pallet
truck or the operator. A common technique in 2D image processing called
Euclidean Cluster Extraction has been used for extracting them, but applied

21



Figure 14: Processing example for a point cloud acquired by the Asus Xtion Pro Live,
Mesa SR 4000 and Asus Xtion Pro respectively. The first picture of each pair is the point
cloud acquired directly and the second the result of the segmentation process, where only
the merchandise remains.

to 3D point clouds [30]. If more than one cluster is found, only the one with
the highest number of points would be considered to be the merchandise. An
example of point cloud processing for every device is shown in Fig. 14.

3.3. Filter of reflections

Throughout the trials, reflections in the point clouds acquired by Mesa
due to the specular characteristics of the pallet surface were observed (Fig. 15).
As a consequence, points belonging to the pallet are not removed in the scene
segmentation process, deteriorating the merchandise volume estimation.

For this reason, a reflection filter for the Mesa has been designed starting
from the two point clouds resulting of applying the intensity filter explained
in section 3.2 to Mesa’s point clouds. One of the point clouds is composed of
those points with an intensity value over the filter threshold, which mostly
belong to the merchandise and the undesired reflect (green and yellow points
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Figure 15: Instance of two point clouds where there are reflections. In both the floor has
been extracted previously. On the left, it can be noticed a Mesa’s point cloud with a
reflection in the pallet (green points which should be red) caused by the own camera. On
the right, a point cloud taken by the Asus Xtion Pro Live simultaneously which is not
affected by this phenomenon.

Figure 16: On the left, the point cloud of Fig. 15 after being segmented and before applying
the filter of reflections. It can be noticed the reflection in the middle which belongs to the
pallet (it should have been removed in the segmentation process). On the right, the result
of applying the filter, where the reflection has been identified correctly (red points).

in Fig. 15). The other point cloud includes the rest of points, which corre-
spond with the pallet (red points). The steps summarizing the process are
explained in the algorithm 1. The result of applying this filter to a point cloud
is shown in Fig. 16, in which can also be observed the differences between
applying the filter of reflections or not to the same point cloud.

4. 3D registration

Once all the point clouds acquired by the devices have been processed,
all the required information to estimate the volume of the merchandise is
disposed. We also need to take into account that the reference system of
each device is different, consequently it is necessary to transform the point
clouds under a unique reference system, that is to say, do a 3D registration.
The problem of merging the information amounts to find the transformation
matrices in R

4×4 which contains the necessary information to rotate and
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Algorithm 1: Summary of the Reflection Filter Process.

input : Two point clouds obtained through the application of an
intensity filter into a Mesa’s point cloud, the first depicting
the merchandise (points with higher intensity) and the
second the remaining elements (lower intensity).

output: Point cloud without the reflection.

1 Transform the point cloud with the lowest intensity points into a 2D
image. Recall that in this image the points corresponding to the
merchandise and the reflection are not included;

2 Apply a dilating and an erosion process for filling the smallest holes
which virtually correspond with the reflection and some corners of
the merchandise;

3 Compare point-to-point this image with the correspondent to the
segmented merchandise. Those points present in both images are
candidates to belong to the reflection. However, it is possible that
some contour points may be classified as candidates too;

4 To remove the reflection from the outline of the merchandise, search
for the set of points more centred and closer to the floor. In case a
point belongs to the reflection, its height would be lower than the
height of the rest because the pallet is the closest element to the
floor. Besides, in that case it would be just located in the centre of
the image because the reflect appears just underneath the device as it
can be observed in Fig. 16;

translate the point clouds between different reference systems. As a result,
they allow to change the reference system of a point cloud acquired from one
device to another. This problem has been extensively studied [31] [32] [33]
and the steps to carry out can differ from the type of point cloud used or
how is the scene depicted.

In the following, we illustrate how to transform the reference system once
the transformation matrix T ∈ R

4×4 is known.

T =

[
R t
0 1

]
, (1)

where R ∈ R
3×3 is the rotation matrix and t ∈ R

3 is the translation vector
between the reference systems of two cameras. Given a 3D point Xk

i from
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a point cloud acquired by sensor k and expressed in its own reference with
homogeneous coordinates, it can be transformed to a common reference of a
second sensor h by applying the transformation matrix T which links both
reference systems:

Xh
i = T ·Xk

i (2)

The solution proposed to compute the transformation matrix which as-
sures a 3D registration of the merchandise without affecting the robustness of
the system consists in doing a unique initial calibration of the devices. That
is to say that the first time the system is installed, the user will select some
keypoints from the scenario and then, the user will define correspondences
from these keypoints between the different point clouds, each one acquired
by a distinct camera. Note that it is not required any calibration pattern.
In particular, it is only required a default scenario up to the user’s choice.
The only specification for this scenario is that it should have distinguishable
points among all the target space where the volume will be measured and
also these points must be observable in at least two different point clouds.
From the correspondences, a first approximate transformation matrix is cal-
culated through the application of the algorithm developed by Arun et al.
[34] based on the singular value decomposition (SVD). The transformation
matrix obtained by this way is employed as a seed for the Iterative Closest
Point algorithm (ICP) [35]. Owing to the correctness of the correspondences
introduced manually, the seed is quite close to the final solution which eases
the convergence of the ICP to the minimum global error and in just a few
iterations.

Proceeding in this way, we avoid doing all the typical procedure of an
automatic 3D registration each time the volume is computed, resulting in a
considerable save of computation time. Such approach is possible because
relative positions are always the same once the cameras have been placed.
Therefore, the transformation matrices that connect the different viewpoints
of the three devices are constant. So once they have been calculated, it is
only necessary their application to change the reference system of the point
clouds initially acquired.

The automatic computation of the transformation matrix each time a
point cloud is acquired is not used because of the high computation time and
the lack of robustness observed in testing phase. The main reason is that
only three cameras are being applied to register all the merchandise, so the
change of viewpoint from one device to another is very significant and the
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baseline is very large too. Indeed, we are trying to register a 180o arch with
only three cameras. In addition, another reason which explains this perfor-
mance is that the scene is normally composed of boxes. Therefore, almost
all the geometric elements we are working with are rather similar because
they consist of a set of parallel and perpendicular planes. Moreover, attend-
ing to the levels of intensity or colour registered by the cameras, they are
considerably homogeneous. In conclusion, it is really tough to automatically
obtain appropriate keypoints and good correspondences with the required
robustness for an industrial application due to the large baseline, the lack of
intense gradients or characteristic areas in the scene.

5. Volume estimation

In this section, we present the methods developed to estimate the volume
of the merchandise. Without loss of generality, we have assumed for the
design of the algorithms that there are not holes nor projecting elements
inside the load due to the limitations of the sensors and for security reasons.

5.1. Voxel method

Algorithm 2: Volume estimation with Voxel method
input : 3D registration point cloud and the equation of the ground plane.
output: Volume of the merchandise.

1 Align the z -axis of the point cloud with the normal of the ground plane;
2 Search the point cloud for the point with the minimum distance to the floor plane

(MinDist), which corresponds with the face of the pallet where the merchandise
is stacked;

3 Split up the point cloud into cells (voxels), and define the point cloud with points
into the centroids of the cells (CS = CellSide);

4 while all the points of the original point cloud have not been processed yet do
5 Search the point cloud for the point with the highest distance to the ground

plane which has not been processed yet (CPH = CurrentPointHeight);
6 Add the volume of the prism corresponding to the cell of this point:
7 V+ = CS2 ∗ (CPH −MinDist) (3)
8 Mark the cell as processed, as well as all the cells placed underneath (all the

cells which have been taken into account with the prism)
9 end

The proposed algorithm starts from the idea of splitting up the point
cloud into cubes and then adding to the volume sets of cubes, or in other
words, add prisms, resulting in a sort of volumetric integration. The steps
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of this algorithm to estimate the volume V, starting from the ground plane
and the point cloud obtained in the 3D registration which depicts the mer-
chandise, are described in algorithm 2.

5.2. Method of projecting planes

The previous method is valid for all type of loads. However, one of the
most usual ways of merchandise transportation is through boxes. For this
reason, the experimental trials have been done with boxes. As long as we
accept the hypothesis that all the load is packed in this manner, which is
quite plausible, such information can be applied to develop a new volume
computation method. Since boxes are formed by planes exclusively, their
volume can be calculated through their vertical projection. In particular,
the volume of the set corresponds with what there are underneath every
plane parallel to the floor, as it can be observed in Fig. 17. Therefore, it
is only needed to know all the planes of the point cloud and compute the
area of those parallel to the floor. By knowing their height in relation to
the pallet, the volume can be easily computed. The steps for computing the
volume V of the merchandise represented in a point cloud are explained in
algorithm 3.

Figure 17: Mesa’s point cloud acquired from the top of the arch, depicting a zenithal view.
This configuration of the merchandise corresponds with the case 14 of Fig. 19 and consists
of three columns of boxes with different heights.

One difficulty of this algorithm is the area computation. The reason is
that sometimes the planes have irregular shapes and concave zones. Formulas
for area computation of irregular polygons, assuming ordered vertices, exists.
However, such information is not known a priori.

The adopted solution consists in the transformation of the 3D point cloud
into a 2D image (left picture in Fig. 18, which represents the situation in
which the two upper planes of the load of Fig. 17 have been projected into
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Algorithm 3: Volume estimation with method of projecting planes
input : 3D registration point cloud, a Mesa SR 4000 point cloud (zenithal view)

and the equation of the ground plane.
output: Volume of the merchandise.

1 Search the 3D registration for the point with the minimum distance to the floor
plane (MinDist), which corresponds with the face of the pallet where the load is
stacked;

2 Search the point cloud acquired by Mesa SR 4000, which represents a zenithal
view, for all the planes;

3 Order them according to their distances to the origin (the camera itself);
4 while all the found planes have not been processed yet do
5 Extract the closest plane to the origin (reference plane) which has not been

processed yet from the point cloud (RPH = ReferencePlaneHeight);
6 Compute its area (A = Area);
7 if there is any plane (current plane) beneath the reference one then
8 Compute the volume until this lower plane (CPH = CurrentPlaneHeight):
9 V+ = A ∗ (RPH − CPH); (4)

10 Project the points of the reference plane onto the current plane;
11 else
12 In case there are not any planes below, compute the volume until the base:
13 V+ = A ∗ (RPH −MinDist); (5)
14 end
15 Mark the reference plane as processed;
16 end

the height of the lowest plane). After that, the image is processed by means
of computer vision techniques. First, algorithms such as eroding and dilating
are applied. Note that the second one adds new points around those existing
already. As a consequence, the shift within the image is minimum. However,
the outlines of the image are displaced (i.e. an image dilation). The effect
of the other algorithm is just the contrary. Therefore, unless there are holes
or not connected zones in the image which would have been reduced or even
disappeared, the final result is practically the original image. The utiliza-
tion of these functions improves the robustness and precision of the contour
detection carried out next. Once we dispose of a connected image, a Canny
filter is applied [36] to get the contours of the image and afterwards order
them (right picture in figure 18). Finally, the pixels within each contour are
counted by means of a function based on the Green’s theorem [37] to compute
the area:

A =

∮
∂D

P (x, y)dx+Q(x, y)dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy , (6)
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where D is a region with boundary ∂D, P and Q functions of (x, y) defined
on an open region containing D, where they have continuous partial deriva-
tives. The left side is a line integral and the right side is a surface integral.
Manipulating this equation, a connection between the area of a region and
the line integral around its boundary is obtained. For a plane curve specified
parametrically as (x(t), y(t)) for t ∈ [t0, t1], (6) becomes:

A =
1

2

∫ t1

t0

(x y′ − y x′) dt . (7)

The area computed in this way is measured in pixels, so it must be trans-
formed to m2 applying the scale factor between the 2D image and the 3D
point cloud.

Figure 18: The left picture corresponds to a top view of the point cloud shown in Fig. 17
after projecting the two upper planes onto the plane below (the three planes of this mer-
chandise have been projected, so all points have the same height). On the right, it is
displayed the same picture after being processed applying a dilating and an eroding filter,
then a Gaussian filter and afterwards the canny edge detector. The area of the plane is
computed through this image.

6. Experimental results

Once every phase which composes the designed method has been de-
scribed, we proceed now to evaluate the volume estimation accuracy. A
diagram summarizing the different components of the system from the soft-
ware point of view is depicted in Fig. 20. It also shows the links between
the libraries used and the cameras and the computer. Key components of
this architecture are the drivers for the data acquisition and the Point Cloud
Library used to implement our method relying on different algorithms for
point cloud processing.
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Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Case 10 Case 11 Case 12

Case 13 Case 14 Case 15

Figure 19: 3D registration point clouds of the 15 different cases employed to evaluate the
system. It is shown the point cloud of Asus Xtion Pro in blue, the corresponding point
cloud of the Asus Xtion Pro Live is coloured and the point cloud acquired by Mesa SR 4000
is displayed in an intensity scale (where red is the lowest and blue the biggest intensity
level).
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Figure 20: Diagram of the different components involved in the system. Three cameras
are connected and controlled with their corresponding drivers. PCL is mainly used for
the data processing together with OpenCV library. The output of the system is finally
displayed on a TV screen through an interface.

In order to evaluate the volume estimation accuracy, fifteen different trial
situations (Fig. 19) have been defined in which the configuration of the mer-
chandise varies from simple situations just with a few boxes to others more
complicated with plenty of boxes placed in distinct positions. For every situ-
ation, it has been measured the accuracy and computation time applying the
two methods previously exposed. Although the trials have been performed
with static merchandise, the system can also work when the merchandise is
in motion as it can be checked in the video attached (the accuracy of the
system can be lower in a dynamic situation than in a static one because data
quality might decrease). In the video it is displayed how an operator passes
through the arch with a load of merchandise and the system returns its vol-
ume and 3D registration on a screen. The experiments have been carry out
with a 64 bit computer with six Intel(R) Xeon(R) CPU X5650 (2,67 GHz)
cores and 24 GB of RAM memory.

A result summary for both volume estimation methods previously ex-
plained is shown in the Table 2. On the other hand, in Table 2 we can
observe how the error produced with the voxel method is quite acceptable.
Specifically, the average error is 7.41%, so it is inside the admissible limits
for an industrial system. The computation time employed for the volume
estimation varies from 1 to 5 seconds, depending on the size of the trans-
ported load. In case the merchandise is restricted to boxes exclusively, the
method of projecting planes is more efficient, accurate and also with the
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smallest computation times (around 1 second on average). Furthermore, the
resultant average error is only 4.16%.

In order to illustrate the proposed method, a summary of the intermediate
steps during a volume estimation process for one of the situations included
in the system evaluation (case 9) is shown in Fig. 21. The measured volume
for this configuration is 67.5 dm3, while the estimation of the voxel method
is 72.5 dm3 and 69.3 dm3 with the method of projecting planes, which corre-
spond with an error of 7.33% and 2.69% respectively.

Regarding the total time of a scanning, data can be acquired at a frame
rate of 30 or 50 frames per second (see Table 1). The scene segmentation
and 3D registration phases only require a few seconds and their processing
time is quite stable. Thus, the most relevant stage in terms of efficiency is
the volume estimation algorithm as shown in Table 2. On average, the total
time of scanning from the initial acquisition until the final volume estimation
shows up in the user’s screen is about 8 seconds. Therefore, the system can
be considered to work in real time since the merchandise does not need to
be stopped to wait for the result of the estimation. Notice that the code has
not been optimized yet and the full hardware capacity is not exploited. For
instance, apart from the volume estimation, additional data is shown in the
screen during the experiments in live such as the merchandise reconstruction,
different steps of the algorithm or information about the characteristics of
the merchandise.
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Table 2: Summary of the results obtained for volume estimation with each method for the
Fifteen Cases. Time measurements refer to the computation time of the volume estimation
algorithms. A positive error corresponds with an overestimation of the volume, while a
negative error is an underestimation.

Case
Voxel Projection of planes

Error (%) Time (s) Error (%) Time (s)

1 7.37 1.14 -2.47 0.43

2 4.30 1.19 -2.86 0.39

3 10.11 0.83 0.52 0.42

4 9.83 1.77 4.16 0.94

5 7.92 1.95 2.19 1.12

6 -0.12 2.21 -4.60 0.76

7 10.13 2.06 3.65 0.80

8 9.40 1.92 7.97 0.92

9 7.33 2.43 2.69 0.95

10 7.65 0.66 4.86 0.27

11 7.00 1.98 -0.76 1.11

12 9.97 1.63 -7.07 0.57

13 -1.41 2.44 -13.24 0.83

14 11.73 2.05 5.08 1.24

15 6.81 5.56 -0.23 1.81

Mean error 7.41% 4.16%

Median error 7.65% 3.65%
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Figure 21: Summary of the intermediate steps for the volume estimation process in the case
9. The first row corresponds with the raw image acquired by the devices. The second row
is the same image after being transformed into a point cloud. The third row represents the
point cloud after being segmented, that is to say, only the merchandise remains. Finally,
the last point cloud is the result of doing a 3D registration with the segmented point
clouds. Starting from this point cloud, the final step is the volume computation of the
merchandise through the application of the designed algorithms.
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7. Conclusion

Given the obtained results, it can be stated that a robust and efficient
system has been designed, which is able to estimate the volume of the mer-
chandise stacked on a pallet. Besides, the challenge that entails working
with sensors based on distinct technologies, such as structured light or time
of flight, has been overcome. The developed system has been experimentally
evaluated with the volume estimation in fifteen disparate situations which
cover a wide variety of load configurations. The results show that the devel-
oped system is accurate, with a margin of error smaller than 10% on average
and can be performed in real time. Although this accuracy error could be re-
duced by improving some particular aspects of the implemented system, the
margin of improvement is quite limited because of the measurement errors
inherent to working conditions and the own devices as it has been observed
in the accuracy and precision study.

Concerning to the cost of the measurement system, it depends on the
number and type of sensors used. For instance, one Asus can costs approx-
imately about 150 e and one Mesa about 4.000 e. Note that this field of
research is growing very fast and the costs of these sensors may be reduced
in medium-term period of time. Additionally, a computer is needed. Al-
though it seems preferable to choose the Asus, it must be taken into account
that it is not an industrial device. Therefore, it carries a potential lack of
robustness and, for this reason, it would not be recommendable to use this
sensor in some specific environments with hard conditions such as vibrations
or environmental dust.

Given the good results obtained in the experimental evaluation, the Tech-
nological Institute of Aragón1 has installed the proposed system in the ICT
Logistics Demonstration Centre. There, the application is exhibited to com-
panies which visit these installations in order to show them the possibilities
that range sensors offer in conjunction with the open-source library PCL.

Future work for enhancing the features of the proposed system could
be the combination with other technologies for the purpose of getting more
detailed information of the merchandise or even to improve volume estima-
tion. A suitable technology is Radio-frequency identification (RFID), which
is being increasingly applied in environments where our system can be im-
plemented.

1http://www.itainnova.es
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